In Stock

Metallo bianco antifrizione

Descrizione

metalli bianchi antifrizione sono elementi impiegati in modo indispensabile per ciò che concerne:

  • il riporto sulle bronzine e sui cuscinetti di tutte le parti meccaniche in movimento
  • i motori a scoppio, a gas, elettrici, diesel
  • le turbine
  • le dinamo
  • i laminatoi
  • i verricelli in genere.

Col nome di metalli antifrizione si distingue nella tecnica una serie di leghe binarie e ternarie, qualche volta quaternarie, nelle quali predominano lo stagno ed il piombo: gli altri costituenti sono, in ordine d’importanza, l’antimonio, il rame e, in più piccole quantità, l’arsenico e l’alluminio. Di recente sono state introdotte leghe di piombo, bario e calcio. Il nome di antifrizione non è esatto, poiché queste leghe hanno effettivamente un coefficiente d’attrito superiore a quello del bronzo, al quale vengono però frequentemente preferite perché dànno, in conseguenza di altre loro caratteristiche, un minor numero di riscaldamenti occasionali.

Il metallo antifrizione può essere prodotto in pani o in verghe, a seconda delle richieste da parte della clientela, sempre secondo gli alti standard necessari in questo ambito.

Essendo leghe prodotte con metalli di prima fusione e trattate termicamente rispettando i criteri attuali, rispondono in modo perfetto dal punto di vista meccanico e fisico.

  • Le leghe utilizzate sono: Sn 80% – Sn 83% – Sn 85% – Sn 90%.
  • I punti di fusione variano in base alla lega: da 420 °C a 490 °C.
  • Durezza “BRINELL” a 20 °C Kg. 18/29

Queste leghe si preparano con polveri metalliche (per es., rame 89%, stagno 10%, grafite 1%) che sono sinterizzate; la massa porosa ottenuta è quindi impregnata d’olio. È disponibile pure una lega alluminio (80%)-stagno (20%) per bronzine di motori di autoveicoli, pressata direttamente sul supporto di acciaio, caratterizzata da una elevatissima resistenza all’usura.

Recensioni

Ancora non ci sono recensioni.

Solamente clienti che hanno effettuato l'accesso ed hanno acquistato questo prodotto possono lasciare una recensione.

Quick Comparison

SettingsMetallo bianco antifrizione removeBombole Ossigeno in Noleggio Roma removeTorce Trafimet Ergoplus 36 ad aria removeSaldatrice Decamig 520 SD - 180A - 230V x 1F removeAnidride Carbonica removeSaldatrice a filo Decamig 525 TD - 220A - 230/400V x 3F remove
NameMetallo bianco antifrizione removeBombole Ossigeno in Noleggio Roma removeTorce Trafimet Ergoplus 36 ad aria removeSaldatrice Decamig 520 SD - 180A - 230V x 1F removeAnidride Carbonica removeSaldatrice a filo Decamig 525 TD - 220A - 230/400V x 3F remove
Imagemetallo-antifrizione Salfershop.comBombole Ossigeno in noleggioTorcia a filo Ergoplus 36/4decamig 520 SD Salfershop.comAnidride-Carbonica Sal.fer.Shop.comdecamig 525 TD Salfershop.com
SKUDMIG520SDCo2DMIG525TD
Rating
Price
Stock
Availability
Add to cart

Leggi tutto

Leggi tutto

Scegli

Aggiungi al carrello

Leggi tutto

Aggiungi al carrello

DescriptionBombole in noleggio per Roma e Provincia, di Ossigeno Industriale liquido e gassoso    Idonea per impianti fino a 300 A con raffreddamento ad ariaAlimentazione Monofase 230 VProdotto qualitativo per:
Gasatura dell'acqua e bevande analcoliche
Confezionamento alimentare in atmosfera protettiva
Inertizzazione dei serbatoi e dei silos
Applicazioni in enologia sia nella vendemmia che pigiatura
Surgelazione rapida 


Per la saldatura del filo acciaio, alluminio, MG e Si, CuSi3/CuAI Alimentazione trifase 230/400 V
Contentmetalli bianchi antifrizione sono elementi impiegati in modo indispensabile per ciò che concerne:
  • il riporto sulle bronzine e sui cuscinetti di tutte le parti meccaniche in movimento
  • i motori a scoppio, a gas, elettrici, diesel
  • le turbine
  • le dinamo
  • i laminatoi
  • i verricelli in genere.
Col nome di metalli antifrizione si distingue nella tecnica una serie di leghe binarie e ternarie, qualche volta quaternarie, nelle quali predominano lo stagno ed il piombo: gli altri costituenti sono, in ordine d'importanza, l'antimonio, il rame e, in più piccole quantità, l'arsenico e l'alluminio. Di recente sono state introdotte leghe di piombo, bario e calcio. Il nome di antifrizione non è esatto, poiché queste leghe hanno effettivamente un coefficiente d'attrito superiore a quello del bronzo, al quale vengono però frequentemente preferite perché dànno, in conseguenza di altre loro caratteristiche, un minor numero di riscaldamenti occasionali. Il metallo antifrizione può essere prodotto in pani o in verghe, a seconda delle richieste da parte della clientela, sempre secondo gli alti standard necessari in questo ambito. Essendo leghe prodotte con metalli di prima fusione e trattate termicamente rispettando i criteri attuali, rispondono in modo perfetto dal punto di vista meccanico e fisico.
  • Le leghe utilizzate sono: Sn 80% - Sn 83% - Sn 85% - Sn 90%.
  • I punti di fusione variano in base alla lega: da 420 °C a 490 °C.
  • Durezza "BRINELL" a 20 °C Kg. 18/29
Queste leghe si preparano con polveri metalliche (per es., rame 89%, stagno 10%, grafite 1%) che sono sinterizzate; la massa porosa ottenuta è quindi impregnata d’olio. È disponibile pure una lega alluminio (80%)-stagno (20%) per bronzine di motori di autoveicoli, pressata direttamente sul supporto di acciaio, caratterizzata da una elevatissima resistenza all’usura.

Bombole Ossigeno in Noleggio fornibile per Roma e provincia

Industria alimentare e delle bevande Nell’industria alimentare e delle bevande, l’ossigeno è impiegato:
  • per il confezionamento in atmosfera protettiva
  • per l’ossigenzazione in vasche negli allevamenti ittici
  • come ozono, per la disinfestazione e sterilizzazione nei processi di lavorazione industriali.
Lavorazione e produzione dei metalli Nella lavorazione e produzione dei metalli, l’ossigeno è impiegato:
  • per sostituire o arricchire l’aria, aumentando la temperatura di combustione (produzione dei metalli sia ferrosi sia non ferrosi)
  • per creare una fiamma rovente nei cannelli di saldatura ad alta temperatura utilizzati nel taglio e nella saldatura
  • per supportare le operazioni di taglio oxyfuel
  • quale gas di protezione.
Industria chimica Nell’industria chimica, l’ossigeno è impiegato:
  • per alterare la struttura delle materie prime tramite l’ossidazione, producendo acido nitrico, ossido di etilene, ossido di propilene, monomero di cloruro di vinile e altre sostanze chimiche in blocco
  • per aumentare la capacità e l’efficienza di distruzione degli inceneritori dei rifiuti.
Industria della carta Nell’industria della carta, l’ossigeno è impiegato:
  • per effettuare una serie di processi di fabbricazione compresi la delignificazione, la sbiancatura, l’estrazione dell’ossido, il recupero chimico, l’ossidazione di liquido bianco/nero e l’arricchimento dei forni di calce nel rispetto dell’ambiente.
Fabbricazione del vetro Nella fabbricazione del vetro, l’ossigeno è impiegato:
  • per aumentare l’efficienza di combustione nei forni da vetro e a suola, riducendo le emissioni di ossido di azoto (NOx).
Industria petrolifera Nell’industria petrolifera, l’ossigeno è impiegato:
  • per ridurre la viscosità e migliorare lo scorrimento nei pozzi di petrolio e gas
  • per aumentare la capacità degli impianti di cracking catalitico del fluido e per facilitare l’utilizzo delle materie prime più pesanti
  • per ridurre le emissioni di zolfo nelle raffinerie.
Trattamento delle acque L’ossigeno viene impiegato per il trattamento delle acque di processo e la depurazione delle acque reflue. Produzione di energia Nella produzione di energia, l’ossigeno è impiegato:
  • per trasformare il carbone in elettricità.
L’ossigeno, che costituisce circa il 21% dell’atmosfera terrestre, è indispensabile alla vita ed inoltre rende possibile la combustione. Si tratta di uno degli elementi più abbondanti presenti sulla terra: l’85 per cento degli oceani ed il 46 per cento della crosta terrestre (rocce e minerali) è costituito da ossigeno, così come il 60 per cento del corpo umano. L’ossigeno reagisce con tutti gli elementi, tranne i gas nobili, per formare composti detti ossidi. La capacità di reazione, ovvero il livello di ossidazione, varia a seconda degli elementi. Per esempio, il magnesio si ossida molto rapidamente, infiammandosi spontaneamente nell’aria, mentre i metalli nobili, quali oro e platino, si ossidano solo se sottoposti a temperature molto elevate. Sebbene l’ossigeno non sia di per sé un gas infiammabile, esso favorisce la combustione, facendo sì che tutti i materiali infiammabili in aria possano bruciare molto più intensamente. Queste proprietà di combustione giustificano il suo utilizzo in molte applicazioni industriali. Caratteristiche tecniche Prodotto: ossigeno Formula chimica: O2 Aspetto: gas incolore Odore: gas inodore Limiti di infiammabilità in aria: non applicabile Altre proprietà: poco solubile in acqua Classificazione: Reagendo con altre sostanze questi prodotti possono facilmente ossidarsi o liberare ossigeno. Per tali motivi possono provocare o aggravare incendi di sostanze combustibili. Precauzioni: evitare il contatto con materiali combustibili.
La Torcia a filo Ergoplus 36 metri 4 con raffreddamento ad aria, è ideale per lavori medio impegnativi su saldatrici a filo fino a 350 A e per fili fino a mm. 1,2 - 1,6 Si possono usare con questa torcia normalmente fili pieni, l'attacco posteriore della torcia è lo standard EURO. Siamo in grado di fornirvi la gamma completa della ricambistica di questa torcia, dagli ugelli esterni cromati, ai diffusori gas, alle punte guidafilo, alle guaine metalliche. La Torcia a filo Ergoplus  36 metri 4 raffreddata ad aria,  è la torcia ideale per medi lavori di carpenteria e in manutenzione. La torcia è corredata di guaina metallica, se necessitano saldature con filo di Alluminio si consiglia di sostituire la guaina metallica con una in Teflon o materiale plastico per evitare problemi di rottura del filo di Alluminio. La Torcia a filo Ergoplus 36 nasce con attacco posteriore modello Euro, ma possiamo fornirla con ogni genere di attacco o adattatore, tipo Tweco, Miller, Lincoln. Le Torcia a filo Ergoplus 36 possono essere fornite con lunghezze da metri 3 ( cod. MA 7446) da metri 5 (cod. MA 7448) - Scegliere la torcia più idonea, rammentando che la lunghezza della torcia deve essere rapportata alle caratteristiche del trainafilo della saldatrice e al filo utilizzato, per evitare problematiche sulla relativa scheda di controllo. Siamo inoltre in grado di fornirvi tutta la ricambistica per queste torce ed il gas di protezione per saldare Acciaio al CarbonioAlluminio ed Acciaio inox, chiedeteci informazioni tecniche alla nostra email info.salfer@virgilio.it La torcia per saldatura a filo Ergoplus 36 metri 4 per saldature MIG/ MAG con attacco Euro, ideale per saldare fili pieni ramati per Acciaio al Carbonio o Acciaio Inox da 0,8 a 1,2 Raffreddamento ad aria, l'attacco di tipo Euro la rende adattabile ad ogni saldatrice in commercio costruita negli ultimi 10 anni La torcia per saldatura a filo Ergoplus 36 con attacco Euro si usa con un gas di  protezione che generalmente è Argon puro o Miscela di Argon e anidride carbonica, o ossigeno, in base al materiale che si sta saldando. Richiedeteci la tabella dei gas più idonei per il vostro tipo di giunzione (salfershop.com)La saldatura MIG (Metal-arc Inert Gas) o MAG (Metal-arc Active Gas) (l'unica differenza fra le due è il gas che viene usato per la protezione del bagno di saldatura), indicate entrambe nella terminologia AWS come GMAW (Gas Metal Arc Welding) l procedimento di saldatura MIG/MAG è un procedimento a filo continuo in cui la protezione del bagno di saldatura è assicurata da un gas di copertura, che fluisce dalla torcia sul pezzo da saldare. Il fatto che sia un procedimento a filo continuo garantisce un'elevata produttività al procedimento stesso, e contemporaneamente la presenza di gas permette di operare senza scoria (entrambe queste caratteristiche aumentano l'economicità del procedimento nei confronti della saldatura a elettrodo) Il gas di protezione ha la funzione di impedire il contatto del bagno di fusione con l'atmosfera, quindi deve essere portato sul bagno di fusione direttamente dalla torcia. Inizialmente il procedimento prevedeva solo l'uso di Argon (gas inerte), quindi veniva usato solo per la saldatura di acciai inossidabili austenitici, dato il costo elevato del gas di protezione. Successivamente si vide che l'aggiunta di un gas ossidante (inizialmente Ossigeno e, successivamente, Anidride carbonica) non solo permetteva una protezione analoga, ma aveva effetti favorevoli sul trasferimento di metallo dal filo al bagno di fusione, quindi si diffuse la tecnica MAG, che utilizza un gas attivo per la protezione ed il procedimento fu esteso anche alla saldatura di acciai al carbonio. I gas di protezione inerti più utilizzati sono Ar ed He, entrambi sono gas monoatomici inerti, ma, mentre l'Ar è più pesante dell'aria, quindi stagna sul bagno di fusione, garantendo una maggiore protezione, l'He è più leggero dell'aria, quindi fornisce una protezione minore, tuttavia, avendo una conduttività termica circa 10 volte quella dell'Ar, permette una penetrazione della saldatura maggiore. Per questo motivo l'utilizzo di He è limitato a giunti di elevato spessore o a materiali aventi elevata conducibilità termica (Cu o Al). Invece i gas attivi sono generalmente miscele di Ar e CO2, con l'anidride carbonica che, in casi estremi, sostituisce l'Ar (comunque raramente viene usata in percentuale superiore al 25%). La presenza di CO2 aumenta la stabilità di posizionamento dell'arco su materiali ferromagnetici (acciai al carbonio o bassolegati). Inoltre la presenza di gas attivo permette una maggiore penetrazione del giunto. D'altra parte la presenza di CO2 provoca un aumento della corrente necessaria per avere un trasferimento di metallo a spruzzo fra il filo ed il bagno, aumenta gli schizzi (spatter) e diminuisce la stabilità elettrica dell'arco. Quindi per poter usare gas attivi con trasferimento a spruzzo, generalmente si utilizza una corrente pulsata, cioè una corrente che presenta picchi di intensità di durata e frequenza prestabilite, per avere un'immissione di energia continua, ma il distacco della goccia metallica solo durante la fase ad alta intensità di corrente. Saldatrice Decamig 520 SD - Simple Weld Series
  • Sistema di autoregolazione della velocità del filo
  • Dotata di tecnologia sinergica digitale SIMPLE WELD
  • Per la saldatura del filo acciaio, alluminio, MG e Si, CuSi3/CuAI (MIG BRAZING) da utilizzare sui nuovi acciai duri HSS, EHS, UHS, ACCIAIO BORO. 
  • Interruttore ON/OFF per poter spegnere la macchina senza muovere le regolazioni di potenza
  • Protezione termostatica 1) Selezione tipo di filo Fe / Al / CuSi3 / Flux 2) Selezione diametro filo 0,6 - 1,0 3) Selezione tipo di gas <> Argon / Argon CO2 / CO2 4) Selezione modalità di saldatura: 2 tempi (2T) / 4 tempi (4T) 5) Selezione modalità di saldatura: Manuale / Sinergica 6) Selezione modalità di saldatura: Continua / Spot (puntatura) / Stitch (tratteggio) 7) Accesso al sottomenu: Burn Back / Rampa Soft Start / Tempo di pausa per la modalità stitch 8) Regolazione fine della velocità del filo (+/- 20%) impostato dalla sinergia Regolazione della velocità del filo in posizione manuale 9) Amperometro / Voltmetro digitale
 
L'anidride carbonica (nota anche come biossido di carbonio o più correttamente diossido di carbonio) è un ossidoacido (anidride) formato da un atomo di carbonio legato a due atomi di ossigeno.
Il diossido di carbonio solido è noto anche come ghiaccio secco e in questa forma ha densità corrisponde a 1562 kg/m³. Il diossido di carbonio può essere però liquefatto sottoponendolo ad alte pressioni a temperatura inferiore ai 31 °C e in questa forma ha una densità di 1022 kg/mcubo

Il diossido di carbonio viene prodotto principalmente a partire dai seguenti processi:[12]

  • come prodotto secondario da impianti di produzione di ammoniaca e idrogeno, in cui il metano è convertito in diossido di carbonio;
  • da combustione di petrolio e carbone fossile; e soprattutto da centrali termoelettriche e da autoveicoli;
  • come sottoprodotto della fermentazione;
  • da decomposizione termica di CaCO3;
  • come sottoprodotto della produzione di fosfato di sodio;
  • direttamente dai pozzi naturali di diossido di carbonio.

In un'atmosfera di biossido di carbonio il fuoco si spegne, per questo alcuni tipi di estintore contengono biossido di carbonio liquido sotto pressione a 73 atmosfere. Anche i giubbotti salvagente spesso contengono capsule di biossido di carbonio liquido, usate per ottenere un rapido gonfiaggio in caso di emergenza.

Acqua gassata, ottenuta tramite l'aggiunta di anidride carbonica.

Le acque minerali frizzanti e le bibite gassate devono la loro effervescenza all'aggiunta di biossido di carbonio. Alcune bibite, tra cui la birra e i vini frizzanti contengono biossido di carbonio come conseguenza della fermentazione che hanno subito.

Ancora, è il biossido di carbonio che fa lievitare gli impasti; molti lieviti, naturali o chimici, sviluppano biossido di carbonio per fermentazione o per reazione chimica.

L'Anidride Carbonica per industria alimentare nel confezionamento alimentare, nella gasatura, nella concimazione e fertilizzazione delle serre, per trasporti refrigerati, permette di ottenere notevoli benefici:
  • Prodotti freschi con caratteristiche organolettiche superiori
  • Maggiore durata nel tempo della confezione
  • Maggiori volumi produttivi per il migliorato stoccaggio
  • Riduzione di perdite di prodotto dovute a scarti
  • minori costi di produzione
  • Maggiore capacità di estensione distributiva territoriale


La saldatura MIG (Metal-arc Inert Gas) o MAG (Metal-arc Active Gas) (l'unica differenza fra le due è il gas che viene usato per la protezione del bagno di saldatura), indicate entrambe nella terminologia AWS come GMAW (Gas Metal Arc Welding) l procedimento di saldatura MIG/MAG è un procedimento a filo continuo in cui la protezione del bagno di saldatura è assicurata da un gas di copertura, che fluisce dalla torcia sul pezzo da saldare. Il fatto che sia un procedimento a filo continuo garantisce un'elevata produttività al procedimento stesso, e contemporaneamente la presenza di gas permette di operare senza scoria (entrambe queste caratteristiche aumentano l'economicità del procedimento nei confronti della saldatura a elettrodo) Il gas di protezione ha la funzione di impedire il contatto del bagno di fusione con l'atmosfera, quindi deve essere portato sul bagno di fusione direttamente dalla torcia. Inizialmente il procedimento prevedeva solo l'uso di Argon (gas inerte), quindi veniva usato solo per la saldatura di acciai inossidabili austenitici, dato il costo elevato del gas di protezione. Successivamente si vide che l'aggiunta di un gas ossidante (inizialmente Ossigeno e, successivamente, Anidride carbonica) non solo permetteva una protezione analoga, ma aveva effetti favorevoli sul trasferimento di metallo dal filo al bagno di fusione, quindi si diffuse la tecnica MAG, che utilizza un gas attivo per la protezione ed il procedimento fu esteso anche alla saldatura di acciai al carbonio. I gas di protezione inerti più utilizzati sono Ar ed He, entrambi sono gas monoatomici inerti, ma, mentre l'Ar è più pesante dell'aria, quindi stagna sul bagno di fusione, garantendo una maggiore protezione, l'He è più leggero dell'aria, quindi fornisce una protezione minore, tuttavia, avendo una conduttività termica circa 10 volte quella dell'Ar, permette una penetrazione della saldatura maggiore. Per questo motivo l'utilizzo di He è limitato a giunti di elevato spessore o a materiali aventi elevata conducibilità termica (Cu o Al). Invece i gas attivi sono generalmente miscele di Ar e CO2, con l'anidride carbonica che, in casi estremi, sostituisce l'Ar (comunque raramente viene usata in percentuale superiore al 25%). La presenza di CO2 aumenta la stabilità di posizionamento dell'arco su materiali ferromagnetici (acciai al carbonio o bassolegati). Inoltre la presenza di gas attivo permette una maggiore penetrazione del giunto. D'altra parte la presenza di CO2 provoca un aumento della corrente necessaria per avere un trasferimento di metallo a spruzzo fra il filo ed il bagno, aumenta gli schizzi (spatter) e diminuisce la stabilità elettrica dell'arco. Quindi per poter usare gas attivi con trasferimento a spruzzo, generalmente si utilizza una corrente pulsata, cioè una corrente che presenta picchi di intensità di durata e frequenza prestabilite, per avere un'immissione di energia continua, ma il distacco della goccia metallica solo durante la fase ad alta intensità di corrente. Saldatrice a filo Decamig 525 TD - Simple Weld Series
  • Sistema di autoregolazione della velocità del filo
  • Dotata di tecnologia sinergica digitale SIMPLE WELD
  • Per la saldatura del filo acciaio, alluminio, MG e Si, CuSi3/CuAI (MIG BRAZING) da utilizzare sui nuovi acciai duri HSS, EHS, UHS, ACCIAIO BORO. 
  • Interruttore ON/OFF per poter spegnere la macchina senza muovere le regolazioni di potenza
  • Protezione termostatica
Caratteristiche (vedi foto) 1) Selezione tipo di filo Fe / Al / CuSi3 / Flux 2) Selezione diametro filo 0,6 - 1,0 3) Selezione tipo di gas <> Argon / Argon CO2 / CO2 4) Selezione modalità di saldatura: 2 tempi (2T) / 4 tempi (4T) 5) Selezione modalità di saldatura: Manuale / Sinergica 6) Selezione modalità di saldatura: Continua / Spot (puntatura) / Stitch (tratteggio) 7) Accesso al sottomenu: Burn Back / Rampa Soft Start / Tempo di pausa per la modalità stitch 8) Regolazione fine della velocità del filo (+/- 20%) impostato dalla sinergia Regolazione della velocità del filo in posizione manuale 9) Amperometro / Voltmetro digitale  
WeightN/AN/AN/A50 kgN/A52 kg
DimensionsN/AN/AN/A77 × 51 × 84 cmN/A77 × 51 × 84 cm
Additional information
Peso 50 kg
Dimensioni 77 × 51 × 84 cm
Peso 52 kg
Dimensioni 77 × 51 × 84 cm